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Traction et compression

1) simples 2) engendrées par des causes indirectes

* Solides prismatiques

» Hypothese de Bernoulli: Une section plane reste plane apres deformation

* Principe de St-Venant: En traction la contrainte est constante sur la section
uniquement si1 la force est uniformément appliquée ou si la section est

suffisamment €loignée du point d’application de la force

* Les tests principaux sur les matériaux pour les mesures des contraintes,
deformations et modules
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Traction et compression simples

. @ . Solides prismatiques = la section normale S est invariable selon x

. @ - 8’ aprés déformation est déduite par simple translation de S (Bernoulli o)

= Distribution uniforme de ¢ S{/ S{ 5
| : > X
I)N:G_[dS:G-S—)a:% A /!

= Pas de déplacement de S selon y ou z iy }

I

:)TyetTZ:O —
ATTA T

* Enrealit¢ o est uniforme que sur les sections assez loin du point d’application
de la force ou que si la force est distribuée uniformément (St Venant ok)
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Tests sur les matériaux

Contraintes
F
o=—
SO
F
Gréelle = S—

reelle

— Y — 0
Copp=0 a £=0,02%
c,,=0 a &£=0,2% siseuil

d'écoulement pas marqué

Modules
O
E=—
&
O,
EAm -
&y
do
EAz -
de|,
Op—0y
EAB -
Ep — &4

Déformations

=—VE =—V—

Coefficient de Poisson

0,2 fonte

0,3 acier

0,5 caoutchouc

v<0,5 car le volume ne diminue pas

S1 anisotropie
V, £V
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Tensions dues au poids propre

max
— O
— " m, p
L ]
— S
N
B leMg
=
! P=p-vS
_’:l y ! ,Oy g
—
T
Mo,

- _Mg+pySg
y S
Mg
O, == T PEY=0,+pgy
—
Mg
o .=—+pgol,
max S p g
S p our O-max ~ O-admissibledumatériau: Grupture
M
S = £
Jadmi o p g L

ii Si accéleration en plus (ascenseur)
Aotal—8 +aaccélémti0n
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Solides d’égale résistance
(7

y - A=f() |
0 pour obtenir une ¢ constante pour tout point de la tour
Y
[’augmentation dA doit équilibrer le suplément de charge
'A da a I’élément m de hauteur dy
— 8§ B
dy | A+d4 o-dA= pgAdy
m d A Intégration PE
T ='Ogdy 5 A=C-e°
A o©

M
eny=0 onaA:AO:Cste:—g
o
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Traction et compression
engendrées par des causes indirectes

1. Tensions dues a une variation de température
2. Tensions dues a une force centrifuge

3. Effets d’une pression interne
» Récipients a parois minces
» Récipients fermés a parois minces
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Dilatation thermique

* Effet thermique AL=L.a AT [ 1 > | |

*Dilatation bloquee —  Othermiques

/e

* Dilatation génée

T, > |T, > <j a,. =121 10°/°C

o, =237 100/°C

E P := L pierre-etienne.bourban@epfl.ch matweb .com



Exo: Rails soudés

Calculer la force nécessaire pour compenser celle induite par la dilatation

thermique de rails. —12.1x 10°6/°C

aacier

(/1 I AT =50 °C

L E =210 GPa
S=75cm?

AT =AL=L-c-AT
F=AL=2.
E

. }L-a-AT_‘;.L:a_a-AT-E_mMPa_

F

S

F=0-S=952N
/

La force est élevée, les traverses
empéchent le flambage des rails et
maintiennent leur alignement
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Tensions dues a une force centrifuge

A est constante sur L @

a) Calcul de la contrainte

R=r+L->
2

m=p-A-x
Force Centrifuge F=m-w'R

F=p-A-a)2(r+L—§jox

zeizp-a)z(r+L—£j-x
A 2

o...pourx=L, o, =pL a)z(r+ gj
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b) Calcul de [’allongement

L’allongement de dx sera

en substituant o, et en intégrant de x=0a x=L

S

On peut €galement concevoir la piece avec une section d’égale résistance a la
force centrifuge

O
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Effets d’une pression interne E

* récipients a parois minces

oy @ * Le parois sont fines ; e petit << L, R

* osont constantes sur e

radiale
d—F> S \\ O-circonférentielle

AN

}dTV}:P |
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—=2F =0 dH s'anulent deux a deux

= 2F, =0 szdN-sinazp-sina- Rda - L

pression . surface = force
T
F = pRL|sinada = pRL[-cosal]
0

F=2pRL

o F _2pRL_pR_pD
K Section 2el e 2e
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Effets d’une pression interne u

srécipients fermes a parois minces

_ 2
/KFP_ER P

A, =27R-e
F =2nR-e-o,
2
SF=0 = o =28P_PR_1_
27Re 2e 2
O
1
O-L=§O-R
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Systemes hyperstatiques s

e systemes isostatiques : lorsque les composantes inconnues des eléements
de réduction des torseurs d’actions mécaniques qui lui sont appliquées
peuvent étre déterminées a partir des seules equations d’équilibre

* systemes hyperstatiques : ses liaisons avec [’extérieur sont plus nombreuses
que les liaisons strictement nécessaires pour assurer [’équilibre statique,
[’examen des conditions de déformation est nécessaire pour calculer les
reactions dues aux liaisons surabondantes
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Systemes hyperstatiques simples | 1

Une force N est appliquée en C, calculer N, et N, dans les deux barres, les réactions en A
et B et le déplacement o du point C

A B
- Ll —| LZ - |
" Es, E,S,
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Systemes hyperstatiques simples | 1

A c 2 B
R, § / | / N R 3 * Equilibre statique: N=N,+N, @
\ 1 § :
§ » (Il est évident que: R, =N, et Rz=N,)
* 2 inconnues N, N,
+ 1 équation (statique) = Systeme hyperstatique d’ordre 1
U
2eme équation = Condition de déformation
L E,S
™ N=N—=2__R =22
° . = ML Ny L, @ : alL +L, “ E S
El Sl E2 SZ L
Allongement de AC ~ Raccourcissement de CB N = N @ L =R B
> alL +L,
e N=N +N, 5. =N— 1l
(OtL1 + LZ)E1 S
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Exo: Sertissage a chaud 1

AT pour appliquer une pression de serrage

Un tube en Cuivre est serti a chaud sur un tube en acier. Le Cu est a AT plus chaud que 1’acier.
Calculer:

* Les odans le Cu et I’acier
» La pression entre les 2 tubes

 Le raccourcissement du rayon commun apres refroidissement du Cu
Cu E, a,AT,
E,=1,17 Mbar a,=16,6x105/°C AT=100°C
E,=2,1 Mbar R=10cm e;=0,5cm  e,=Ilcm
0,=3040 bar = 304MPa
0,=1520 bar
p =152 bar
e=0,72%
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@ Anneaux minces = rayons ~ R 19

—> o est constante sur leur €paisseur

AT et pression de serrage provoque G, en traction dans le Cu

Th2 Th2
Equilibrel: 2-0,-B-e =2 _rsingopdS=2pRB fsimp dp=2pRB

0 0

Equilibre2: 2-0,-B-e,=2pRB @

* 3 inconnues G,, G, ,p

Acier l P + 2 équations — Systéme hyperstatique d’ordre 1

Le raccourcissement de [’anneau de Cu est egal a celui de [’acier

. e 3eme équation: Condition de déformation:
B )

T ’m’% @ 27AR=27Ra, AT-27R =27 RZ2
E E,
02 0-2 CY” A;zf'er
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e,k

R A Résolution avec 4 =—2-2
@ 0, =" e E,
el ﬂd .
_PR o=—AlaF
@ T > N A
2 L 0 _&
@ alAT_%:% 1 o, &
b o, =——ATa,E
7 > 1+ A 2
e, e,
p lR 2R
AR 1
E= = AT «,
R 1+ A

! Remarque: * Risque de flambage de I’anneau comprimé
* Si ’anneau d’acier n’existait pas e,=0 =A=0

le raccourcissement relatif du rayon serait €’ =3,3% ; &/’ =0,22

|
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Etats de contraintes

3D: Choix des axes x,y,z et c,> 0,>0y
A

» 3 faisceau de & autour de M,

* 1 toujours au moins 3 plans (principaux)
normaux sur lesquelsles 7=0 et o sont
extrémes

« L’étude des contraintes consiste a
déterminer [’effet des efforts en M, sur une
facette de direction quelconque »

Exp: Quelles sont les contraintes sur une
soudure inclinée ?

|
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Etats de contraintes &

S

/
[ ) O. E
O, :

Q
|

_ 2
0,=0,C08 &

{ZFH =0=> o0,5,—-o.cosa-S,=0

, = avec S,=S§,cosa =
2F=0=> 5 ,+o sina-S,=0

T,=—0,SInacosa

a

(o)
o, = 7x(1 +cos2a)

. o \ O, o,
avec 2a on a A — Equation paramétrique d'un cercle en 5 et rayon 5

a

o .
T =—2sin2«x
2
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Cercle de Mohr 23

Monodimensionnel Autour de I'axe M,z
’Z' A 0, = O, :0
« Tax @ O =—70/4 — o2
Oy
Autour de I’'axe M.y
O, O.

Autour de I'axe M .x

Tuin= —0/2 a o =m/4 _
S o O-X—O
SO o sy P AR B ST E— —— X, R
P, o,
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24

ny \ ’Z' — O-x
— max 2
/ z-min

Lignes de Lueder

;%é Les t induisent des écoulements plastiques dans

les materiaux ductiles meme si T =0/2

Facies de rupture
‘ E/Plans a+45
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Energie de déformation s

Energie accumulée par le solide sous traction/ compression o Travail de la force extérieure N

@ : Elasticite

E, S = Energie rendue si N, =

N N ex initiale
N — si vitesse lente et donc effets dynamiques internes
L AL sont négligeables
N A
AL, N
dU /( ) U:TdU:TN'd(AL) E-S E-S 1
| 0o o >U:—TAL-d(AL):—AL2:> U=—N-AL
1 AL L 2L 2
! Hooke N=S-E-—
AN L
A/,, i AL Rem: Si N ou la section S varie le long de la poutre
- - g 2
AL dU = N dx
2ES
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Densite d’énergie

u =énergie par unite de volume

[J/m?] o ‘—< <@- o

Utotal™ Uslastique T Uplastique U=—0c=—& LK =——

|
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Etat de contraintes bidimensionnelles 28

Bidimensionnel=

.= O Contraintes planes o, = o; =0

Loi de proportionnalité — principe de superposition

» Chaque contrainte entraine la méme déformation que si elle était seule et la déformation
résultante est la somme des d?'formations partielles

o) O
(c:x —__ X __ V—y
O O
gy —_ Y _ V—x
E E
O-x O-y
g =—-v—=2—y-2L
E E
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Etat de contraintes bidimensionnelles 2

. A Principe de superposition n’est pas applicable pour les énergies

1 1
u_Eo-xgx +50y8y

[1]

e Variation relative du volume
V=g +E, +E,

Ox ;Gy (1-2v)

V =

|
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Etat de contraintes bidimensionnelles &

a) Les axes de réference coincident avec les axes principaux

( 2 .2
c,5,—0.,cos"a—o, sin"a=0 , ,
ey o, =0,C08 a+0,8In" &
X —< 7 . _ = _
T, fﬁ +o,sinacosa—o, cosasma =0 |7, = —(Gx -0, ﬁln acosa
L =l
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en introduisant 2o

c.+o0, o0 .—OC
o,=——=+——>co0s2a
2 2

=cercle entre oy et o

y
T contraintes K et K’ sur 2 sections perpendiculaires
“ T=-7
K(o,7)

2o
z-max et z-min sur

o
.
. > O 4
plans a + /4 o, o a >/ \(
K(o,7) %
A o

|
I pierre-etienne.bourban@epfl.ch



Cercle de Mohr

T

Bidimensionnel

-

|
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o. = O

X

Oy~ 03
0,=03=0
o, = O,
o.>0

<
0,<0

33
Contraintes principales

0;,~> 0, > 03

Etat de contraintes pour
une section tournant

autour d 'un axe autre
que les axes principaux




b) Les axes de référence x,y,z sont différents des axes principaux X,Y,Z 3

z
V4

e La seule variable est o

XF=0 {

2 - 2 . .
®o,l-0.cos"a—o,sin"a—17 cosa sina— 7, sina cosa=0

. . 2 .2
® 7,+0,8inacosa—o,cosasina—7,cos” a+ 7, sin"a=0

sin2a

Trigo = sinacosa =

1-cos2a

2
1+cos2a

2

sin® o =

cos’ a =

o,+o0, 0,-0, .
o, = + 5 cos2a+ 7, sin2«x @

7, =————2sin2a+ 7, cos2a @

* Les valeurs de a correspondant a o,,, =0, et c,. =0, sont obtenues avec....
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_ ~
C;O-“ -0 = 22 5 % sin2a+ 2 7.cos2a=0 @
o

o,—0, .
T,=-— 5 sin2a+ 7, cos2a @

Résolution de @
te2a = 27, @
& o —C

* avartede 0a 180°
* 2arvarie de 0 4 360° = 2 solutionsa (%) 2oy et 2a,)+180°)

On détermine o, et o, en remplacant dans (1) & par a, et a,+90° ou en utilisant
le cercle de Mohr
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o; et o,en fonctionde o,, o, , T

R R:\/( E yj”2

4 o, —O,
cos2a, =
o,—0, R
) sin2a, = %
pour 2¢,+180° — cos(2a,+180°)=—cos2¢,
sin(2a, +180°) =—sin2¢,
o -0,
( x yj + TZ )
o, tO0, 2

—>0, ou O,=
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37
Cercle fondamental lorsque o, > o,> 0 qui entraine

Gmax_ G]
T 4 Omin— O)
- TREN Tx
/A N
/l/ /! : A
/
/// )/ : N
’ J \
B | !
/ / ! O
02: G.)/ // : G \‘ ]
|
® ® -+ —_— » O
i
\ | ’ ,
\\ : H/ ,
Y & /
\ 1 / /7
\\ : 'l ’/
) /
N My,
\\ I,
' N
- ’Z'x
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4.

En pratique

. Détermination de (o, 7,) = K,

et (o,-7) > K,

Sur 2 faces L a §, S, passant par M, z

Construire K|, K, cercle de Mohr

//a S, qui passe par K. se coupent en P: le pole
/a§, qui passe par K,

v/akK, K parP =2a g

=PrL..

etienne.bourban@epfl.ch
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Cercle fondamental, éllipse de Lame »

Pole du cercle de
Mohr
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