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Résistance des matériaux
 Introduction

Définitions, hypothèses
Torseurs des efforts intérieurs
Principe d’équivalence
Moments d’une aire, moments statiques, 

moments d’inertie
Traction et Compression 
Bernoulli, St-Venant
Variation de températures
Pression interne
Force centrifuge
Influence du poids propre
Etat de contraintes
Cercle de Mohr
Energie de déformation
Etat bidimensionnel des contraintes 
Axes et cercles de Mohr principaux
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Traction et compression
2) engendrées par des causes indirectes

• Solides prismatiques

• Hypothèse de Bernoulli: Une section plane reste plane après déformation

• Principe de St-Venant: En traction la contrainte est constante sur la section 
uniquement si la force est uniformément appliquée  ou si la section est
suffisamment éloignée du point d’application de la force

• Les tests principaux sur les matériaux pour les mesures des contraintes, 
déformations et modules

1) simples
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Traction et compression simples
• H    : Solides prismatiques ≡ la section normale S est invariable selon x

• H   : S’ après déformation est déduite par simple translation de S (Bernoulli ok)

⇒ Distribution uniforme de σ

⇒

⇒ Pas de déplacement de S selon y ou z

⇒ τy et τz =0

• En realité σ est uniforme que sur les sections assez loin du point d’application 
de la force ou que si la force est distribuée uniformément (St Venant ok)

 

N = σ dS = σ ⋅ S → σ =
N
Ss

∫∫
x

SS S’
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Tests sur les matériaux

 

σ =
F
S0

σ réelle =
F

Sréelle

σ 0,02 = σ à ε = 0,02%
σ 0,2 = σ à ε = 0,2% si seuil
d'écoulement pas marqué

 

E =
σ
ε

EAm =
σ A

εA

EAt =
dσ
dε A

EAB =
σ B −σ A

εB −εA

0,2    fonte
0,3    acier
0,5    caoutchouc
ν ≤ 0,5 car le volume ne diminue pas

 

ε =
∆L
L0

εt = −ν εl = −ν σ
E

Contraintes Modules Déformations

si anisotropie 

νt ≠ νl!
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Tensions dues au poids propre
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Solides d’égale résistance

L’augmentation dA doit équilibrer le suplément de charge 
dû à l’élément m de hauteur dy

yg

ygnIntégratio

egMA

gMCsteAAyen

eCAdyg
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σ

σ
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=
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=⋅
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?
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y

A+dA

m

dy
A

M

pour obtenir une σ constante pour tout point de la tour

6



pierre-etienne.bourban@epfl.ch

Traction et compression
engendrées par des causes indirectes

1. Tensions dues à une variation de température

2. Tensions dues à une force centrifuge

3. Effets d’une pression interne
 Récipients à parois minces 
 Récipients fermés à parois minces
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Dilatation thermique

• Effet thermique         ∆L=L.α .∆T

•Dilatation bloquée

• Dilatation gênée 

σthermiques

→

→

>T1 T2 → αacier=12,1  10-6 /°C

αAl =23,7   10-6 /°C
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Exo: Rails soudés

S
FMPaETL

E
TL

L
E

LF

TLLT
==⋅∆⋅=⇒⋅=∆⋅⋅







⋅=∆⇒

∆⋅⋅=∆⇒∆
127ασσασ

α

Calculer la force nécessaire pour compenser celle induite par la dilatation 
thermique de rails. αacier =12,1 x 10-6 /°C

∆T = 50 °C

E = 210 GPa

La force est élevée, les traverses 
empêchent le flambage des rails et 

maintiennent  leur alignement 

L
S=75cm2
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Tensions dues à une force centrifuge

ω

A est constante sur L H

a) Calcul de la contrainte

 

F

 

R = r + L −
x
2

m = ρ ⋅ A ⋅ x

Force Centrifuge F = m ⋅ω 2R

F = ρ ⋅ A ⋅ω 2 r + L −
x
2

 
 
 

 
 
 ⋅ x

σ x =
F
A

= ρ ⋅ω 2 r + L −
x
2

 
 
 

 
 
 ⋅ x

σ max pour x = L, σ L = ρ Lω 2 r +
L
2

 
 
 

 
 
 
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b) Calcul de l’allongement

L’allongement de dx sera

en substituant σx et en intégrant de x=0 à x=L

On peut également concevoir la pièce avec une section d’égale résistance à la 
force centrifuge

 

dλ =
σ x

E
⋅ dx

 

λ =
ρ ω L( )2

E
r
2

+
L
3

 
 
 

 
 
 
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Effets d’une pression interne
• récipients à parois minces

H
• Le parois sont fines ; e petit << L , R

• σ sont constantes sur e 

 

dN
 

dH

 

dF

 

dN = P
dα

F/2 F/2
P

e e

L
R

 

σ R =
P ⋅ R

eσradiale
σcirconférentielle

P 

σL
σR

α
αα
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Effets d’une pression interne
•récipients fermés à parois minces

P 

σL= σR/2

 

ΣF = 0 ⇒ σ L =
π R2 p
2πRe

=
pR
2e

=
1
2

σ R

σ L =
1
2

σ R

σ  

Aσ ≅ 2πR ⋅ e
Fσ = 2πR ⋅ e ⋅σ L

 

Ap = π R2

Fp = π R2 ⋅ p
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Systèmes hyperstatiques
• systèmes isostatiques : lorsque les composantes inconnues des éléments
de réduction des torseurs d’actions mécaniques qui lui sont appliquées   
peuvent être déterminées à partir des seules équations d’équilibre

• systèmes hyperstatiques : ses liaisons avec l’extérieur sont plus nombreuses 
que les liaisons strictement nécessaires pour assurer l’équilibre statique; 
l’examen des conditions de déformation est nécessaire pour calculer les 
réactions dues aux liaisons surabondantes
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Systèmes hyperstatiques simples I
Une force N est appliquée en C , calculer N1 et N2 dans les deux barres, les réactions en A 
et B et le déplacement δC du point C

A
C

B

N

E1,S1

L1

E2,S2

L2

N1 N2
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Systèmes hyperstatiques simples I

• Equilibre statique: N=N1+N2   

(Il est évident que: RA=N1  et RB=N2)

1

⇓
2ème équation ⇒ Condition de déformation

• 2 inconnues N1, N2 

• 1 équation (statique) ⇒ Système hyperstatique d’ordre 1

A B
RBRA

1 2

2



 

• δC =
N1 L1

E1 S1

Allongement de AC


=
N2 L2

E2 S2

Raccourcissement de CB


• N = N1 + N2

 

N1 = N L2

α L1 + L2

= RA α =
E2 S2

E1 S1

N2 = N α L1

α L1 + L2

= RB

δC = N L1 L2

α L1 + L2( )E1 S1

17
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Exo: Sertissage à chaud
Un tube en Cuivre est serti à chaud sur un tube en acier. Le Cu est à ∆T plus chaud que l’acier.          
Calculer: 

• Les σ dans le Cu et l’acier
• La pression entre les 2 tubes
• Le raccourcissement du rayon commun après refroidissement du Cu

Cu E1, α1, ∆T1
E1=1,17 Mbar   α1=16,6x10-6/°C         ∆T=100°C   

E2=2,1  Mbar    R=10 cm e1=0,5cm       e2=1cm

σ1=3040 bar = 304MPa

σ2=1520 bar

p = 152 bar

ε =0,72%

Acier, E2

∆T pour appliquer une pression de serrage

18
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H Anneaux minces ⇒ rayons ≈ R

⇒ σ est constante sur leur épaisseur

∆T et pression de serrage provoque σ1 en traction dans le Cu

 

Equilibre1: 2 ⋅ σ1 ⋅ B ⋅ e1 = 2 sinϕ pdS
0

π / 2

∫ = 2 pR B sinϕ dϕ
0

π / 2

∫ = 2 pR B

Equilibre 2 : 2 ⋅σ 2 ⋅ B ⋅ e2 = 2 pR B

• 3 inconnues σ1, σ2 ,p
• 2 équations ⇒ Système hyperstatique d’ordre 1

3ème équation: Condition de déformation:
Le raccourcissement de l’anneau de Cu est égal à celui de l’acier



 

2π ∆R = 2π Rα1 ∆T − 2π R σ1

E1

Cu
  

= 2π R σ 2

E2

Acier
 

1

2

3

Cu

σ1 σ1

p

dϕ

B
ϕ

e1

Acier p

σ2 σ2

B

e2
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σ1 =
p R
e1

σ 2 =
p R
e2

α1 ∆T −
σ1

E1

=
σ 2

E2

1

2

3

 

Résolution avec λ =
e2E2

e1E1

σ1 =
λ

1+ λ
∆Tα1E1

σ 2 =
1

1+ λ
∆Tα1E2

 

 

 
 

 

 
 

σ1

σ 2

=
ε2

ε1

p = σ1
e1

R
= σ 2

e2

R

 

ε =
∆R
R

=
1

1+ λ
∆T α1

! Remarque: • Risque de flambage de l’anneau comprimé

• Si l’anneau d’acier n’existait pas e2=0 ⇒λ=0

le raccourcissement relatif du rayon serait ε’ =3,3% ;   ε/ε’ =0,22  
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Etats de contraintes

σ3

σ1

σ1

σ3

σ2

σ2

z
y

x

« L’étude des contraintes consiste à 
déterminer l’effet des efforts en Mo sur une 
facette de direction quelconque »

σ1=σx

S0

3D: Choix des axes x,y,z  et  σ1> σ2>σ3

1D: σ2 =σ3 =0

• ∃ faisceau de      autour de M0

• ∃ toujours au moins 3 plans (principaux)   
normaux sur lesquels les et      sont 
extrêmes

 

σ

 

τ = 0
 

σ

Exp:  Quelles sont les contraintes sur une 
soudure inclinée ?

21
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Etats de contraintes

x

y

 

n
σα

σx

τα
S0

Sα

α
α

α

S0

 

ΣFn = 0 ⇒ σαSα −σ x cosα ⋅ S0 = 0
ΣFt = 0 ⇒ ταSα + σ x sinα ⋅ S0 = 0

 
 
 

⇒ avec S0 = Sα cosα ⇒
σα = σ x cos2 α
τα = −σ x sinα cosα

 
 
 

avec 2α on a
σα =

σ x

2
1+ cos2α( )

τα = −
σ x

2
sin2α

 

 
 

 
 

⇒ Equation   paramétrique  d'un  cercle en σ x

2
 et  rayon σ x

2
 

Sα

y

x

z

σx= σ1

σx

σx

 

t
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Cercle de Mohr
Monodimensionnel

σy = σz =0

σy
σx

Autour de l’axe M0.z

σxσz

Autour de l’axe M0.y

σx=0
σz

Autour de l’axe M0.x
τmin= −σx/2 à α =π/4

τ =0 plan principal α =0 

τα

σα

τmax à α =−π/4

σ2=0

K(σα ,τα )

σx=σ1

2α

σx/2

σx

23
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Lignes de Lueder

Les τ induisent des écoulements plastiques dans 
les matériaux ductiles même si τ =σ/2

 

τ max =
σ x

2

 

τ min

Plans à + 45
Faciès de rupture

σx

24
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Energie de déformation
Energie accumulée par le solide sous traction/ compression ∝ Travail de la force extérieure N

H  : Elasticité

⇒ Energie rendue si Next=Ninitiale

si vitesse lente et donc effets dynamiques internes 
sont négligeables 

(∆L, N)

∆L

N

 

dU =
N 2

2E S
dx

E, S

L ∆L

NN

∆L

dU

∆N

Rem: Si N ou la section S varie le long de la poutre
 

U = dU =
0

∆L

∫ N ⋅ d(∆L)
0

∆L

∫

Hooke N = S ⋅ E ⋅
∆L
L

 

 
  

 
 
 

U =
E ⋅ S

L
∆L ⋅ d(∆L)

0

∆L

∫ =
E ⋅ S
2 L

∆L2 ⇒ U =
1
2

N ⋅ ∆L
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Densité d’énergie

 

u =
1
2

σ ε =
1
2

ε2E =
1
2

σ 2

E

u =énergie par unité de volume
[J/m3] 

uTotal=      uélastique   +  uplastique

ε

σ

ε1

σσ

26
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Etat de contraintes bidimensionnelles
Bidimensionnel≡

Contraintes planes σz = σ3 =0

• Chaque contrainte entraîne la même déformation que si elle était seule et la déformation 
résultante est la somme des déformations partielles

 

εx =
σ x

E
−ν

σ y

E

εy =
σ y

E
−ν σ x

E

 

 
  

 
 
 

1[ ]

εz = −ν σ x

E
−ν

σ y

E

Loi de proportionnalité → principe de superposition

x

z
y

σy= σ2

σx= σ1

28
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Etat de contraintes bidimensionnelles
•         Principe de superposition n’est pas applicable pour les énergies

• Variation relative du volume

( )ν
σσ

εεε

21v

v

−
+

=

++=

E
yx

zyx

!

 

u =
1
2

σ xεx +
1
2

σ yεy

u =
1
E

σ x
2

2
+

σ y
2

2
−ν σ x σ y

 

 
  

 

 
  

[1]
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Etat de contraintes bidimensionnelles




( )





−−=

+=
⇒









=−+

=−−

→Σ

=

=

αασστ

ασασσ

αασααστ

ασασσ

α

α

αα

αα

cossin
sincos

0sincoscossin

0sincos 22

1

22

1

yx

yx

yx

yx

S

S
F

a) Les axes de référence coïncident avec les axes principaux

y z

x
M0

Sα

x

y

 

n

σx

σα

σy

Sx=cosα

Sy=sinα
Sα=1

α
α

α

τα

30



pierre-etienne.bourban@epfl.ch

 

σα =
σ x + σ y

2
+

σ x −σ y

2
cos2α

τα = −
σ x −σ y

2
sin2α

 

 
  

 
 
 

≡ cercle entre σ x et σ y

en introduisant 2α

contraintes K et K’ sur 2 sections perpendiculaires 
τ’=-τ

σy
σx

σα

τα

K(σ,τ)

K’(σ’,τ’) 2ατmax et τmin sur 
plans à ± π/4

στ

σ
’ττ

τ
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Cercle de Mohr
Bidimensionnel

σz =0

σy σx

τ

σy

σx

σx

σz=0

σz=0

σyx

z
y

z

y

x
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σx = σ1

σy = σ2

σz = σ3 = o

σx = σy

σx>0

σy<0

État de contraintes pour 
une section tournant 
autour d’un axe autre 

que les axes principaux

Contraintes principales

σ1>σ2 >σ3

σxσy σz

σx=σy

333
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b) Les axes de référence x,y,z sont différents des axes principaux X,Y,Z

 

ΣF = 0
• σα1−σ x cos2 α −σ y sin2 α − τ x cosα sinα − τ x sinα cosα = 0

• τα + σ x sinα cosα −σ y cosα sinα − τ x cos2 α + τ x sin2 α = 0

 
 
 

  

 

Trigo ⇒ sinα cosα =
sin2α

2

sin2 α =
1− cos2α

2

cos2 α =
1+ cos2α

2

 

σα =
σ x + σ y

2
+

σ x −σ y

2
cos2α + τ x sin2α

τα = −
σ x −σ y

2
sin2α + τ x cos2α

• La seule variable est α

• Les valeurs de α correspondant à σmax=σ1 et σmin=σ2 sont obtenues avec….

z ≡
Z

X

x
Y

y

1

2

34

x

y

 

n

σx

σα

σy

ταSx=cosα

Sy=sinα
Sα=1

α
α

α

τx

τx = τy
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dσα

dα
= 0 ⇒ − 2

σ x −σ y

2
sin2α + 2 τ x cos2α = 0

 

Résolution de

tg2α =
2τ x

σ x −σ y

 

τα = −
σ x −σ y

2
sin2α + τ x cos2α

 

τα = 0
3

2

3

4

• α varie de 0 à 180°

• 2α varie de 0 à 360° ⇒ 2 solutions à (2α0  et 2α0+180°)

On détermine σ1 et σ2 en remplaçant dans        α par  α0 et α0+90° ou en utilisant 
le cercle de Mohr

4

1
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σ1  et σ2 en fonction de σx , σy  , τ

 

R =
σ x −σ y

2
 

 
 

 

 
 

2

+ τ 2

 

cos2α0 =

σ x −σ y

2
 

 
 

 

 
 

R

sin2α0 =
τ
R

 

pour  2α0 +180° → cos(2α0 +180°) = −cos2α0

sin(2α0 +180°) = −sin2α0

→ σ1 ou σ 2 =
σ x + σ y

2
±

σ x −σ y

2
 

 
 

 

 
 

2

+ τ 2

σ x −σ y

2
 

 
 

 

 
 

2

+ τ 2

R
τ

 

σ x −σ y

2

2α0

 

σ1 =
σ x + σ y

2
+ R

σ 2 =
σ x + σ y

2
− R

 

 
  

 
 
 
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Cercle fondamental lorsque σx > σy > 0  qui entraîne 

σmax= σ1

σmin= σ2τ

σ
σ2 σ1σx

σy

-τx

τx
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En pratique
1. Détermination de (σx, τx)  → Kx

et (σy,-τx)  → Ky

Sur 2 faces ⊥ à Sx, Sy passant par M0 z

2. Construire Kx, Ky cercle de Mohr

3. // à Sx qui passe par Kx     se coupent en P:  le pole

// à Sy qui passe par Ky

4. // à Kx, Ky par P ⇒ 2α, α0

38
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Cercle fondamental, éllipse de Lamé
τ

σα0

Kx

Ky

σ1

P 
Pôle du cercle de 
Mohr

2α
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